Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 3(2): 368-377, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873694

RESUMO

Dehydration of methyl lactate to acrylic acid and methyl acrylate was experimentally evaluated over a Na-FAU zeolite catalyst impregnated with multifunctional diamines. 1,2-Bis(4-pyridyl)ethane (12BPE) and 4,4'-trimethylenedipyridine (44TMDP), at a nominal loading of 40 wt % or two molecules per Na-FAU supercage, afforded a dehydration selectivity of 96 ± 3% over 2000 min time on stream. Although 12BPE and 44TMDP have van der Waals diameters approximately 90% of the Na-FAU window opening diameter, both flexible diamines interact with internal active sites of Na-FAU as characterized by infrared spectroscopy. During continuous reaction at 300 °C, the amine loadings in Na-FAU remained constant for 12BPE but decreased as much as 83% for 44TMDP. Tuning the weighted hourly space velocity (WHSV) from 0.9 to 0.2 h-1 afforded a yield as high as 92% at a selectivity of 96% with 44TMDP impregnated Na-FAU, resulting in the highest yield reported to date.

3.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 12): 1897-1901, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31871754

RESUMO

After crystallization during ionothermal syntheses in phospho-nium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [tri-ammonium dialuminum tris-(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A 3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004 ▸). Nature, 430, 1012-1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms.

4.
Angew Chem Int Ed Engl ; 58(27): 9032-9037, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31066167

RESUMO

The charge density mismatch concept was applied to the synthesis of high-charge-density silicoaluminophosphate SAPO-69 (OFF) and SAPO-79 (ERI) and zincoaluminophosphate PST-16 (CGS), PST-17 (BPH), PST-19 (SBS), and ZnAPO-88 (MER) molecular sieves. Combined alkali-organoammonium structure direction in these systems is thus enabled. Structure direction is treated from the perspective of stabilizing an ionic framework, the relationships between reaction charge density (OH- /H3 PO4 ), alkali and organoammonium content, and ionicity of tetrahedral framework atoms in successful structure direction are presented.

5.
Chemistry ; 24(67): 17779-17787, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246281

RESUMO

Zeolites are porous aluminosilicate materials utilized in a variety of sorption, separation, and catalytic applications. The oil refining industry in particular has seen a number of significant advances due to the introduction of new technologies enabled by new zeolites. Of particular importance are zeolites with 10- or 12-membered ring pores, resulting in pore shapes and sizes appropriate for the interaction with small hydrocarbon molecules. Here, the synthesis of a new zeolite UZM-55 is reported and the idealized structure thereof is presented. The most complex structure solved to date, UZM-55 possesses a large triclinic unit cell containing 52 T-sites. The material uniquely contains both 10- and 12-membered ring pores in a single, undulating one-dimensional channel, the first example in a zeolitic material of multiple delimiting rings in a single channel. This discovery opens new opportunities in shape-selective adsorption and catalysis. Demonstrated here is the unique adsorption behavior of UZM-55, shown both experimentally and computationally to adsorb one nonane molecule per unit cell in a linear conformation.

6.
Angew Chem Int Ed Engl ; 55(17): 5263-7, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26990244

RESUMO

The single-site supported organozirconium catalyst Cp*ZrBz2 /ZrS (Cp*=Me5 C5 , Bz=benzyl, ZrS=sulfated zirconia) catalyzes the single-face/all-cis hydrogenation of a large series of alkylated and fused arene derivatives to the corresponding all-cis-cyclohexanes. Kinetic/mechanistic and DFT analysis argue that stereoselection involves rapid, sequential H2 delivery to a single catalyst-bound arene face, versus any competing intramolecular arene π-face interchange.

7.
J Am Chem Soc ; 137(21): 6770-80, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25884397

RESUMO

Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO2 (ZrS), sulfated Al2O3 (AlS), and ZrO2-WO3 (ZrW). Under mild conditions (25 °C, 1 atm H2), the supported Cp*ZrMe3, Cp*ZrBz3, and Cp*ZrPh3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS ≫ AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures, and selectivities for benzene hydrogenation vary with catalyst as ZrBz3(+)/ZrS(-), 83% > Cp*ZrMe2(+)/ZrS(-), 80% > Cp*ZrBz2(+)/ZrS(-), 67% > Cp*ZrPh2(+)/ZrS(-), 57%. For Cp*ZrBz2(+)/ZrS(-), which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe3 and Cp*ZrBz3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz2(+)/AlS(-) vs Cp*ZrMe2(+)/AlS(-). The combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the "cationic" metal center-anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.

8.
Inorg Chem ; 52(17): 10119-30, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23944270

RESUMO

The grafting of an oxo chloro trisalkyl tungsten derivative on silica dehydroxylated at 700 °C was studied by several techniques that showed reaction via W-Cl cleavage, to afford a well-defined precatalyst for alkene metathesis. This was further confirmed by DFT calculations on the grafting process. (17)O labeling of the oxo moiety of a series of related molecular and supported tungsten oxo derivatives was achieved, and the corresponding (17)O MAS NMR spectra were recorded. Combined experimental and theoretical NMR studies yielded information on the local structure of the surface species. Assessment of the (17)O NMR parameters also confirmed the nature of the grafting pathway by ruling out other possible grafting schemes, thanks to highly characteristic anisotropic features arising from the quadrupolar and chemical shift interactions.

9.
J Am Chem Soc ; 135(6): 2248-55, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23186175

RESUMO

A solid understanding of the molecular-level mechanisms responsible for zeolite crystallization remains one of the most challenging issues in modern zeolite science. Here we investigated the formation pathway for high-silica LTA zeolite crystals in the simultaneous presence of tetraethylammonium (TEA(+)), tetramethylammonium (TMA(+)), and Na(+) ions as structure-directing agents (SDAs) with the goal of better understanding the charge density mismatch synthesis approach, which was designed to foster cooperation between two or more different SDAs. Nucleation was found to begin with the formation of lta-cages rather than the notably smaller sod and d4r-cages, with concomitant incorporation of TMA(+) and Na(+) into a very small amount of the solid phase with a low Si/Al ratio (ca. 2.5). The overall characterization results of our work demonstrate that sod-cages are first built around the preorganized lta-cages and that d4r-cages are in turn constructed by the progressive addition of low-molecular-weight (alumino)silicate species, which promotes the formation and growth of embryonic LTA zeolite crystals. We also show that the crystal growth may take place by a similar process in which TEA(+) is also incorporated, forming a single LTA zeolite phase with a higher Si/Al ratio (ca. 3.3).

10.
Chem Commun (Camb) ; 48(30): 3611-3, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22395285

RESUMO

The first example of propylene production from 2-butene in promising yield is described by reacting trans-2-butene over tungsten hydrides precursor W-H/Al(2)O(3) at 150 °C and different pressures in a continuous flow reactor. The tungsten carbene-hydride active site operates as a "bi-functional catalyst" through the disfavoured 2-butene isomerisation on W-hydride and 2-butenes/1-butene cross-metathesis on W-carbene.

12.
Chem Commun (Camb) ; 46(47): 8944-6, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20981359

RESUMO

A well-defined, silica-supported tungsten oxo alkyl species prepared by the surface organometallic chemistry approach displays high and sustained activity in propene metathesis. Remarkably, its catalytic performances outpace those of the parent imido derivative, underlining the importance of the oxo ligand in the design of robust catalysts.

13.
Langmuir ; 20(22): 9456-62, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15491177

RESUMO

The sulfated metal oxides (SMOs) sulfated stannia (SnS), sulfated iron oxide (FeS), and sulfated titanium dioxide (TiS) have been synthesized and examined as support materials/cocatalysts/activators for molecule-based olefin polymerization and hydrogenation catalysis. (13)C CPMAS NMR spectroscopic analysis of Cp(2)Zr((13)CH(3))(2)/SMO chemisorption shows that cationic zirconocenium species are formed along with varying amounts of catalytically inactive micro-oxo (Cp(2)Zr(CH(3))O-surface) species, depending on the support material. Ethylene polymerization data with the supported catalysts show that polymerization activity is dependent on both precursor ligation [Zr(CH(2)Ph)(4) > (Me(5)Cp)ZrMe(3)] and the nature of the support (SnS > FeS > TiS). Poisoning studies were performed in conjunction with ethylene polymerization, mediated by (Me(5)Cp)ZrMe(3) supported on each SMO, and reveal that, for (Me(5)Cp)ZrMe(3)/SnS, 61 +/- 5% of the Zr sites are catalytically significant, while, for (Me(5)Cp)ZrMe(3)/FeS, this quantity is 22 +/- 2%, and for (Me(5)Cp)ZrMe(3)/TiS, 63 +/- 9%. These catalysts are also active for benzene hydrogenation and are separable from liquid-phase products using physical or, in the case of FeS, magnetic techniques.

14.
J Am Chem Soc ; 125(14): 4325-31, 2003 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-12670255

RESUMO

Sulfated alumina (AlS), a highly Brønsted acidic sulfated metal oxide, is prepared by the impregnation of gamma-alumina with 1.6 M H(2)SO(4), followed by calcination at 550 degrees C for 3 h. (13)C CPMAS NMR spectroscopy of the chemisorbed (13)C(alpha)-enriched organozirconium hydrocarbyl Cp'(2)Zr((13)CH(3))(2) (2)/AlS (Cp' = eta(5)-(CH(3))(5)C(5)) reveals that the chemisorption process involves M[bond]C sigma-bond protonolysis at the strong surface Brønsted acid surface sites to yield a "cation-like" highly reactive zirconocenium electrophile, Cp'(2)Zr(13)CH(3)(+). In contrast, chemisorption of 2 on dehydroxylated alumina (DA) yields a similar cation via methide transfer to surface Lewis acid sites, while chemisorption onto dehydroxylated silica yields a mu-oxo Cp'(2)Zr((13)CH(3))-OSi[triple bond] species. Two complementary active site kinetic assays for benzene hydrogenation show that, unlike typical heterogeneous and supported organometallic catalysts, 97 +/- 2% of all Cp'ZrMe(3) (3)/AlS sites are catalytically significant, demonstrating that the species identified by (13)C CPMAS NMR is indeed the active species. 3/AlS mediates benzene hydrogenation with a turnover frequency of 360 h(-1) at 25 degrees C/1.0 atm H(2). Active site assays were also conducted for ethylene polymerization and reveal that 87 +/- 3% of 3/AlS sites are catalytically active, again demonstrating that nearly all zirconium sites are catalytically significant. Relative rates of ethylene homopolymerization mediated by the catalysts prepared via Cp(2)Zr(CH(3))(2) (1), Cp'(2)Zr(CH(3))(2) (2), Cp'Zr(CH(3))(3) (3), Zr(CH(2)TMS)(4) (4), and Zr(CH(2)Ph)(4) (5) (Cp = eta(5)-C(5)H(5)) chemisorption on AlS are 5/AlS > or = 4/AlS > or = 3/AlS > 2/AlS > or = 1/AlS for ethylene homopolymerization at 150 psi C(2)H(4), 60 degrees C. Under identical conditions, the polymerization rate for 3/DA is approximately 1/10th that for 3/AlS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...